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Unit 8: Solving Systems of Linear Equations Algebraically

9.1 Solving Systems of Linear Equations by Substitution

Substitution Method:
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Ex. At a dance recital, there were 220 people. Tickets cost $9 for an adult and $6 for a child. The
dance collected $1614 in ticket sales. How many adults adults and how many children attended the
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4.2 Solving Systems of Linear Equations by Elimination
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Ex. Connor downloaded two orders of games and songs. The first order consisted of five games
and four songs for $26. The second order consisted of three games and two songs for $15. All
games cost the same amount and all songs cost the same amount. Write a system of linear
equations. Then, determine the cost of one song and the cost of one game.
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Ex. The perimeter of a rectangular garden is 17 m. Triple the length is 2:46 m longer than five

times the width. Sketch and label a diagram. Create a system of linear equations to determine
the dimensions of the rectangle. Solve the system using elimination.
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