Exponent Law Practice

	Exponent Law
Note that a and b are r integral exponents.	ational or variable bases and m and n are
Product of Powers	$(a^m)(a^n)=a^{m+n}$
Quotient of Powers	$\frac{a^m}{a^n}=a^{m-n}, a\neq 0$
Power of a Power	$(a_m)_n = a_{mn}$
Power of a Product	$(ab)^m = (a^m)(b^m)$
Power of a Quotient	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, b \neq 0$
Zero Exponent	$a^0 = 1$, $a \neq 0$

Simplify, then evaluate.

1.
$$\frac{4^5 \times 4^6}{4^3} =$$

$$2. -b^0 =$$

$$3.(3^2)^3 =$$

$$4. \frac{(5+3)^2}{8^5} =$$

$$5. \left(\frac{2}{3}\right)^{-4} =$$

6.
$$(-4)^0 =$$

$$7.\,\frac{7a^2b^6c^3}{35a^3b^2c} =$$

8.
$$(3^2)^4 \times (2^3)^2 =$$

$$9.\left(\frac{-3}{x^{-4}}\right)$$

Exponent Law Practice

	Exponent Law
Note that <i>a</i> and <i>b</i> are raintegral exponents.	ational or variable bases and $m{m}$ and $m{n}$ are
Product of Powers	$(a^m)(a^n)=a^{m+n}$
Quotient of Powers	$\frac{a^m}{a^n}=a^{m-n}, a\neq 0$
Power of a Power	$(a^m)^n=a^{mn}$
Power of a Product	$(ab)^m = (a^m)(b^m)$
Power of a Quotient	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, \ b \neq 0$
Zero Exponent	$a^0=1, a\neq 0$

Simplify, then evaluate.

1.
$$\frac{4^5 \times 4^6}{4^3} =$$

$$2. -b^0 =$$

$$3.(3^2)^3 =$$

$$4.\frac{(5+3)^2}{8^5} =$$

$$5.\left(\frac{2}{3}\right)^{-4} =$$

6.
$$(-4)^0 =$$

$$7.\,\frac{7a^2b^6c^3}{35a^3b^2c} =$$

$$8. (3^2)^4 \times (2^3)^2 =$$

$$9.\left(\frac{-3}{x^{-4}}\right)$$

2.0 LCM, GCF, Prime Factorization

FMP10		Name:		
Date:				
	<u>Unit :</u>	2: Exponents & Rac	dicals	
	<u>2.1</u>	Square & Cube Ro	ots	
Perfect Square:				
Square Root:				
oqual c noon				
Perfect Cube:				
Cube Root:				
cube Root.				
Ex. Determine the value terms.	of each expression	on. Express your answ	ver as integers or frac	tions in lowes
a) 6 ³	b) $(-4)^2$	c) -4^2	d) $\frac{4^3}{6}$	
Prime factorization (cube.	factor tree) can b	e used to determine if	a number is a perfec	t square or
Ex.	:f		fact auto bath	-: 4b
Determine and state	it each number is	s a perfect square, per	rect cube, both, or ne	eitner:

b) 729

d) 4096

a) 121

c) 356

Ex.

Evaluate, with the aid of a calculator if necessary:

a)
$$\sqrt{324}$$

b)
$$\sqrt[3]{13824}$$

c)
$$\sqrt{\frac{25}{361}}$$

d)
$$\sqrt[3]{175616}$$

e)
$$\sqrt{36x^2}$$

f)
$$\sqrt[3]{8q^3}$$

g)
$$\sqrt{961z^6}$$

h)
$$\sqrt[3]{512m^{12}}$$

$$i) \sqrt[3]{\frac{27x^9}{1000y^{15}}}$$

i)
$$\sqrt[3]{\frac{27x^9}{1000y^{15}}}$$
 k) $\sqrt{\frac{100q^{10}u^{12}}{169x^{18}}}$

Ex.

a) A floor mat for gymnastics is a square with an area of 196 m². What is its side length?

b) The volume of a cubic box is 27 000 in.³ Determine its side length.

2.2 Integral Exponents

Exponent Law Summary

	Exponent Law
Note that a and b are integral exponents.	rational or variable bases and \emph{m} and \emph{n} are
Product of Powers	$(a^m)(a^n)=a^{m+n}$
Quotient of Powers	$\frac{a^m}{a^n}=a^{m-n}, a\neq 0$
Power of a Power	$(a^m)^n = a^{mn}$
Power of a Product	$(ab)^m = (a^m)(b^m)$
Power of a Quotient	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, b \neq 0$
Zero Exponent	$a^0 = 1, a \neq 0$

Exploring Negative Exponents:

Continue the pattern:

$$2^4 = 16$$

$$2^3 = 8$$

$$2^2 = 4$$

$$2^1 =$$

$$2^0 =$$

$$2^{-1} =$$

$$2^{-2} =$$

$$2^{-3} =$$

$$2^{-4} =$$

$$3^4 = 81$$

$$3^3 = 27$$

$$3^2 = 9$$

$$3^{1} =$$

$$3^0 =$$

$$3^{-1} =$$

$$3^{-2} =$$

$$3^{-3} =$$

$$3^{-4} =$$

Simplify using expansion and cancellation, then simplify by exponent laws:

$$\frac{4^2}{4^5}$$

$$(-2)^{\frac{1}{2}}$$

$$(-2)^{7}$$

Summary:

$$a^{-n} =$$

$$\frac{1}{a^{-n}} =$$

$$\left(\frac{a}{b}\right)^{-n} =$$

Ex. Write each expression with positive exponents.

5 ⁻²	$(4y)^{-3}$
x^{-5}	$4y^{-3}$
$\left(\frac{4}{5}\right)^{-3}$	$\frac{1}{6^{-3}}$
xy^{-2}	$\frac{1}{z^{-5}}$
$x^3y^{-1}z^{-7}$	$(xy)^{-2}$

Ex. Write each product or quotient as a power with a single exponent.

$$(5^8)(5^{-3})$$

$$(0.8^{-2})(0.8^{-4})$$

$$\frac{(2x)^3}{(2x)^{-2}}$$

$$(-4)^3(-4)^{-8}$$

$$\frac{x^5}{x^{-3}}$$

$$\frac{q^{-1}}{q^7}$$

Ex. Write each expression as a power with a single, positive exponent. Then, evaluate where possible.

$$(4^3)^{-2}$$

$$\left(\frac{2^4}{2^6}\right)^{-3}$$

$$\left[\frac{(y^2)^0}{(y^{-4})^2}\right]^{-3}$$

$$[(a^{-2})(a^3)]^{-1}$$

$$\left[\left(\frac{3}{4} \right)^{-2} \left(\frac{3}{4} \right)^4 \right]^{-2}$$

Ex. It is estimated that there are 108 billion grasshoppers in an area of 27 000 km² of Saskatchewan. Approximately how many grasshoppers are there per square kilometre? Solve arithmetically and by using exponent laws.

2.3 Rational Exponents - Extension

Ex. Write each product or quotient as a power with a single positive rational exponent.

a)
$$(5^{\frac{1}{3}})(5^{\frac{5}{3}})$$

a)
$$\left(5^{\frac{1}{3}}\right)\left(5^{\frac{5}{3}}\right)$$
 b) $(x^5)\left(x^{-\frac{1}{2}}\right)$ c) $\frac{3^{-\frac{3}{4}}}{3^{0.25}}$

c)
$$\frac{3^{-\frac{3}{4}}}{3^{0.25}}$$

d)
$$\frac{8^{1.8}}{16^{0.3}}$$

Ex. Write each expression as a power with a single positive rational exponent. Then, evaluate where possible.

a)
$$(x^{1.5})(x^{3.5})$$

a)
$$(x^{1.5})(x^{3.5})$$
 b) $(p^{\frac{-5}{4}})(p^{\frac{1}{2}})$ c) $\frac{4^{\frac{1}{2}}}{4^{0.5}}$

c)
$$\frac{4^{\frac{1}{2}}}{4^{0.5}}$$

d)
$$\frac{1.5^{\frac{4}{3}}}{1.5^{\frac{1}{6}}}$$

We can use our exponent laws to deal with rational exponents, but what do they mean?

$$\left(25^{\frac{1}{2}}\right)\left(25^{\frac{1}{2}}\right) =$$

What else when multiplied by itself gives a product of 25? _____

What is the relationship between $25^{\frac{1}{2}}$ and 5?

Ex. Write each expression as a power with a single positive rational exponent. Then, evaluate where possible.

a)
$$(4x^3)^{0.5}$$

b)
$$\left[(x^3) \left(x^{\frac{3}{2}} \right) \right]^{\frac{1}{2}}$$
 c) $\left(\frac{3^4}{16} \right)^{-0.75}$

c)
$$\left(\frac{3^4}{16}\right)^{-0.75}$$

Ex. Simplify and evaluate where possible.

a)
$$(27x^6)^{\frac{2}{3}}$$

b)
$$\left[\left(x^{\frac{4}{3}}\right)\left(x^{\frac{1}{3}}\right)\right]^9$$

c)
$$\left(\frac{x^3}{64}\right)^{-\frac{2}{3}}$$

Ex. Food manufacturers use a beneficial bacterium called *Lactobacillus bulgaricus* to make yogurt and cheese. The growth of 10 000 bacteria can be modeled using the formula $N = 10\ 000(2)^{\frac{h}{42}}$, where *N* is the number of bacterial after *h* hours.

- a) What does the value of 2 in the formula tell you?
- b) How many bacteria are present after 42 h?

c) How many more bacteria are present after 2 h?

d) How many bacteria are present after 105 h?

2.4A

2.4A Irrational Numbers I Extension

Irrational Numbers:

Number Sets:

Place the letter corresponding with the correct description in the appropriate area on the diagram.

A. Examples include $\pi \ \& \sqrt{2}$

B. Examples include $0.3, \frac{4}{5}, \& \sqrt{25}$

C. 1, 2, 3,...

D. ...-3, -2, -1, 0, 1, 2, 3...

E. 0, 1, 2, 3,...

F. All rational & irrational numbers

Label:

$$\sqrt[n]{\chi}$$

Rational Exponent Law:

Ex. Express each power as an equivalent radical.

a)
$$64^{\frac{1}{2}}$$

b)
$$16^{\frac{3}{4}}$$

c)
$$(8x^2)^{\frac{1}{3}}$$

d)
$$10^{\frac{1}{4}}$$

e)
$$1024^{\frac{1}{3}}$$

f)
$$(x^4)^{\frac{3}{8}}$$

Ex. Express each radical as a power with a rational exponent.

a)
$$\sqrt[4]{5^3}$$

b)
$$\sqrt[5]{3^4}$$

c)
$$(\sqrt{s^3})$$

$$d)\sqrt{125}$$

e)
$$\sqrt[3]{y^5}$$

f)
$$(\sqrt[n]{27^2})$$

2.4B

4.4B Irrational Numbers II - Extension

Mixed radical:

Entire radical:

Ex. Express each mixed radical as an equivalent entire radical.

a) $5\sqrt{11}$

b) $2\sqrt[3]{5}$

c) $5\sqrt[3]{6}$

Ex. Express each entire radical as an equivalent mixed radical.

- a) $\sqrt{27}$ b) $\sqrt{50}$ c) $\sqrt{48}$
- d) $\sqrt[3]{32}$

- e) $\sqrt{40}$
- f) $\sqrt{108}$
- g) $\sqrt[3]{54}$
- h) ∜<u>80</u>

Ex. Order these irrational numbers from least to greatest without a calculator.

$$2\sqrt{18}$$

$$\sqrt{8}$$

$$3\sqrt{2}$$

$$\sqrt{32}$$

Ex. Order these numbers from least to greatest. Identify which numbers are irrational.

$$2.\overline{2}$$

$$2.\,\overline{2} \qquad 2\sqrt{2} \qquad \sqrt[3]{8}$$

Ex. The Seabee Mine is located in Laonil Lake, SK. In 2007, the mine produced a daily average of gold great enough to fill a cube with a volume of 180 cm³. If five days of gold production is cast into a cube, what is its edge length?

Practice 2.4A

- 1. Express each power as an equivalent radical.
 - a) $5^{\frac{3}{2}}$

 $d) \qquad \left(\frac{x^4}{y^2}\right)^{\frac{-3}{2}}$

b) $(27^2)^{\frac{2}{3}}$

e) $(x^6y)^{\frac{1}{3}}$

- c) $(4x^3)^{0.5}$
- 2. Express each radical as a power.
 - **a)** $\sqrt{(9x)^3}$

d) $\sqrt[4]{x^0y^2}$

b) $\sqrt{(4x^2)^3}$

e) $9\sqrt[5]{x^{\frac{5}{2}}}$

- c) $\sqrt[3]{64x^6}$
- 3. Evaluate each expression. Give the result to four decimal places, if necessary.
 - a) $14^{\frac{3}{2}}$
 - **b)** $5(0.8)^{\frac{1}{3}}$
 - c) $\frac{\sqrt{9}}{\sqrt{12}}$
 - d) $\sqrt[3]{25}$

- **1.** a) $\sqrt{5^3}$ b) $(\sqrt[3]{27})^4$ c) $\sqrt{4x^3}$ d) $\sqrt{\frac{y^6}{x^{12}}}$ e) $\sqrt[3]{x^6y}$ **2.** a) $(9x)^{\frac{3}{2}}$ b) $(4x^2)^{\frac{3}{2}}$ c) $(64x^6)^{\frac{1}{3}}$ d) $y^{\frac{1}{2}}$ e) $9x^{\frac{1}{2}}$
- 3. a) 52.3832 b) 4.6416 c) 0.8660 d) 2.9240

Practice 2.4B

- 1. Express each mixed radical as an equivalent entire radical.
 - a) $5\sqrt{3}$
 - **b)** $\left(\frac{2}{5}\right)\sqrt{10}$
 - c) $2\sqrt[3]{4}$
 - **d)** $-4\sqrt[3]{2}$
 - e) $5\sqrt[3]{3}$
- 2. Express each entire radical as an equivalent mixed radical.
 - a) $\sqrt{180}$
 - **b)** $\sqrt{108}$
 - c) $\sqrt[3]{750}$
 - d) $\sqrt[3]{81}$
 - **e)** $\sqrt{486}$
- 3. Order each set of numbers from greatest to least. Describe the method you used.
 - a) $\sqrt{35}$, $\sqrt{\frac{5}{3}}$, $\sqrt[3]{45}$, $3\sqrt{20}$
 - **b)** $4\sqrt{5}$, $2\sqrt[3]{5}$, $\sqrt{60}$, $\sqrt[3]{4}$
- **1.** a) $\sqrt{75}$ b) $\sqrt{\frac{8}{5}}$ c) $\sqrt[3]{32}$ d) $\sqrt[3]{-128}$ e) $\sqrt[3]{375}$ **2.** a) $6\sqrt{5}$ b) $6\sqrt{3}$ c) $5\sqrt[3]{6}$ d) $3\sqrt[3]{3}$ e) $9\sqrt{6}$
- 3. a) $3\sqrt{20}$, $\sqrt{35}$, $\sqrt[3]{45}$, $\sqrt{\frac{5}{3}}$. Example: I estimated the values and plotted the values on a number line.
- **b)** $4\sqrt{5}$, $\sqrt{60}$, $2\sqrt[3]{5}$, $\sqrt[3]{4}$. Example: I converted each mixed radical to an entire radical.

SA Extra Practice

- 1. Determine whether each of the following numbers is a perfect square, a perfect cube, both, or neither. Justify your choices mathematically.
 - a) 196
 - **b)** 200
 - **c**) 343
 - **d)** 625
 - e) 729
 - f) 3375
- 2. Evaluate using prime factorization.
 - **a)** $\sqrt{256}$
 - **b**) $\sqrt{225}$
 - c) $\sqrt[3]{1000}$
 - **d**) $\sqrt{1681}$
 - e) $\sqrt[3]{512}$
 - **f**) $\sqrt[3]{64}$

- 3. Evaluate.
 - **a)** $\sqrt{289}$
 - **b)** $\sqrt{1444}$
 - c) $\sqrt{3025}$
 - **d)** $\sqrt[3]{1728}$
 - e) $\sqrt[3]{5832}$
 - f) $\sqrt[3]{8000}$
- **4.** The area of a square city block is 62 500 m². Calculate the length of a side.
- 5. Taylor needs to add a lace edge to a square tablecloth. The area of the cloth is 9 m². What length of edging does she need?
- 6. The surface area of a sphere is given by the formula $SA = 4\pi r^2$. If the surface area of a beach ball is 3600π cm², what is the radius of the ball?
- 7. A cubic aquarium for five sea lions has a volume of 216 m³. Calculate the dimensions of the aquarium.
- **8.** The volume of a cube is 125 cm³. Calculate the total length of all the edges.

KEY

- 1. a) perfect square b) neither c) perfect cube
- d) perfect square e) both f) perfect cube
- **2.** a) 16 b) 15 c) 10 d) 41 e) 8 f) 4
- **3.** a) 17 b) 38 c) 55 d) 12 e) 18 f) 20
- 4. 250 m 5. 12 m 6. 30 cm 7. 6 m 8. 60 cm

3.2 Extra Practice

- 1. Write each expression with positive exponents.
 - a) c^{-4}
 - **b)** mn^{-2}
 - **c)** $3x^{-3}$
 - d) $4m^3n^{-2}$
 - e) $-2x^{-4}$
 - **f**) $-5x^{-3}y^{-2}$
- **2.** Simplify each expression. State the answer using positive exponents.
 - **a)** $(2^{-2})(2^3)$
 - **b**) $(3^0)(3^{-3})$
 - c) $\frac{5^3}{5^{-4}}$
 - **d)** $\frac{(3^{-7})(4)}{(3^9)(4^3)}$
 - **e)** $(2^4)^3$
 - **f**) $(3^2)^{-4}$
 - **g**) $[(4)(2^{-3})]^{-2}$
 - **h)** $\left(\frac{6^2}{5^{-3}}\right)^{-3}$
- **3.** Simplify each expression. State the answer using positive exponents.
 - **a)** $(2xy^2)(3x^{-1}y^0)$
 - **b)** $(-3m^2n)(-4m^4n^{-2})$
 - c) $\frac{m^3 n^{-2}}{(mn^4)(m^5 n^2)}$
 - **d)** $(-3xy^4)^2$.
 - e) $(4xy^{-3})^{-2}$
 - **f)** $-4x(5x)^3$
 - $\mathbf{g)} \left(\frac{6mn^3}{4m^2n} \right)^2$
 - $\mathbf{h)} \left(\frac{3x}{-2y^2} \right)^{-2}$

- **4.** Simplify, then evaluate. Give the result as a fraction where necessary.
 - **a)** 5^{-2}
 - **b**) 7^0
 - $\mathbf{c)} \left(\frac{6}{7}\right)^{-2}$
 - **d)** $-(-3)^2$
 - e) $\frac{1}{(-3)^{-2}}$
 - $\mathbf{f} \mathbf{1} \mathbf{3}^{-1} + \mathbf{4}^{-1}$
 - \mathbf{g}) $-5(m^0+n^0)^2$
 - **h)** $\frac{5^{-1}+5^{-2}}{5^{-3}}$
 - i) $\left[\left(\frac{3}{4} \right)^{-2} \right]^3$
- 5. A bacterial culture in a lab has 500 cells. The number of cells doubles every hour. This relationship can be modelled by the equation $N = 500(2)^h$, where N is the estimated number of bacteria cells and h is the time in hours.
 - a) If the conditions remain ideal, how many cells will there be after 6 h?
 - b) How many cells were there 2 h ago?
- **6.** Dana evaluated the expression $\left(\frac{1}{2}\right)^{-3} = 8$. Is she correct? Justify your answer.

KEY

- **1.** a) $\frac{1}{c^4}$ b) $\frac{m}{n^2}$ c) $\frac{3}{x^3}$ d) $\frac{4m^3}{n^2}$ e) $\frac{-2}{x^4}$ f) $\frac{-5}{x^3y^2}$
- **2.** a) 2 b) $\frac{1}{3^3}$ c) 5^7 d) $\frac{1}{(3^{16})(4^2)}$ e) 2^{12} f) $\frac{1}{3^8}$
- **g**) $\frac{2^6}{4^2}$ **h**) $\frac{1}{(6^6)(5^9)}$
- **3. a)** $6y^2$ **b)** $\frac{12m^6}{n}$ **c)** $\frac{1}{m^3n^8}$ **d)** $9x^2y^8$
- e) $\frac{y^6}{16x^2}$ f) $-500x^4$ g) $\frac{9n^4}{4m^2}$ h) $\frac{4y^4}{9x^2}$
- **4.** a) $\frac{1}{25}$ b) 1 c) $\frac{49}{36}$ d) -9 e) 9 f) $\frac{7}{12}$
- **g)** -20 **h)** 30 **i)** $\frac{4096}{729}$
- **5. a)** 32 000 **b)** 125 **6.** Yes. $\left(\frac{2}{1}\right)^3 = 8$

2.3

多 Extra Practice

1. Use the exponent laws to simplify each expression.

$$\mathbf{a)} \left(x^{\frac{1}{2}} \right) \left(x^{\frac{7}{2}} \right)$$

b)
$$(3m^4) \left(m^{\frac{1}{4}}\right)$$

c)
$$[(x^{1.5})(x^{2.5})]^{0.5}$$

$$\mathbf{d}) \left(\frac{5x^3}{20x} \right)^{\frac{1}{2}}$$

e)
$$\left(x^{\frac{2}{3}}y^{\frac{4}{3}}\right)^3$$

2. Simplify each expression. State the answer using positive exponents.

$$\mathbf{a)} \left(y^{-2} \right) \left(y^{\frac{5}{2}} \right)$$

b)
$$\left(-8x^{-6}\right)^{\frac{1}{3}}$$

c)
$$\frac{(x^3)^{\frac{1}{2}}}{(x^2)^{\frac{5}{5}}}$$

$$\mathbf{d}) \left(\frac{x^{\frac{1}{4}}}{16x^{\frac{3}{4}}} \right)^{\frac{1}{2}}$$

e)
$$\left(x^{\frac{1}{3}}y^{\frac{4}{5}}\right)^0 \left(x^{\frac{1}{3}}\right)^6$$

3. Evaluate without using a calculator. Leave each answer as a rational number.

a)
$$\frac{5^{-2}}{125^{\frac{1}{3}}}$$

b)
$$\frac{9^{\frac{3}{2}}}{27^2}$$

c)
$$\left(8^{\frac{2}{3}}\right)\left(16^{\frac{3}{2}}\right)$$

d)
$$(3^{-2})^{\frac{-5}{2}}$$

e)
$$\left(125^{\frac{-1}{3}}\right)^2$$

4. Evaluate using a calculator. Give the result to four decimal places, if necessary.

a)
$$(7^{1.2})^{-3}$$

b)
$$(4^3)(4^{\frac{3}{2}})$$

c)
$$(7^3)^{\frac{2}{3}}$$

d)
$$\left(\frac{6^2}{3^3}\right)^{\frac{1}{3}}$$

e)
$$\left[\frac{3^2}{(-3)^4}\right]^{\frac{1}{2}}$$

5. The growth of 5000 bacterium cells in a lab can be modelled using the expression

 $N = 5000(1.5)^{\frac{n}{40}}$, where N is the number of bacteria after h hours.

- a) What does the value 1.5 in the expression tell you?
- b) How many bacteria are there after 40 h?
- c) How many more bacteria are there after 3 h?
- d) What does h = 0 indicate?

KEY

1. a)
$$x^4$$
 b) $3m^{\frac{17}{4}}$ c) x^2 d) $\frac{x}{2}$ e) x^2y^4

2. a)
$$y^{\frac{1}{2}}$$
 b) $\frac{-2}{x^2}$ c) x d) $\frac{1}{4x^{\frac{1}{4}}}$ e) x^2

3. a)
$$5^{-3} = \frac{1}{125}$$
 b) $3^{-3} = \frac{1}{27}$ **c)** $2^8 = 256$ **d)** $3^5 = 243$

e)
$$\left(\frac{1}{5}\right)^2 = \frac{1}{25}$$

4. a)
$$7^{-3.6} = 0.0009$$
 b) $4^{\frac{9}{2}} = 512$ **c)** $7^2 = 49$

d)
$$\frac{6^{\frac{2}{3}}}{3} = 1.1006$$
 e) $3^{-1} = 0.3333$

- **5. a)** The number of bacteria increases by 1.5 times every 40 h.
- b) 7500. There are 7500 bacteria after 40 h.
- c) 5154.385; 5154.385 5000 = 154.385. There are approximately 154 more bacteria after 3 h.
- d) Example: The value h = 0 indicates the starting population of 5000 bacteria.

5.4 Extra Practice

- 1. Express each power as an equivalent radical.
 - a) $5^{\frac{2}{3}}$

b) 80.75

c) $6^{\frac{3}{5}}$

d) 810.5

 $\star^{e})\frac{1}{\alpha^{\frac{5}{2}}}$

- f) $(x^3)^{\frac{1}{4}}$
- $\mathbf{g} \left(\frac{1}{a^3} \right)^2$
- **h**) $\left[\frac{\left(\frac{1}{x^{\frac{1}{3}}}\right)}{\left(\frac{1}{x^{\frac{1}{3}}}\right)}\right]^2$
- 2. Express each radical as a power.
 - a) $\sqrt[4]{3^3}$
- **b**) $\sqrt[3]{(5t)^4}$
- c) $\sqrt[3]{x^2}$
- e) $\sqrt[3]{v^{\frac{5}{2}}}$
- f) $\sqrt[q]{2^3}$
- 3. Evaluate each expression. State the result to four decimal places, if necessary.
 - a) $\sqrt{0.25}$
- c) $3\sqrt{12}$
- d) $\sqrt{(\frac{5}{4})^2}$
- e) $4(1.2)^{\frac{3}{4}}$
- 4. Express each mixed radical as an equivalent entire radical.
- 女a) 4√5
- **b)** $3\sqrt{4}$
- c) $5\sqrt{13}$
- d) $6.2\sqrt{10}$
- e) $3.3\sqrt{16}$
- f) $\frac{1}{5}\sqrt{10}$
- 5. Express each mixed radical as an equivalent entire radical.
 - a) $3\sqrt{5}$
- **b)** $7\sqrt[3]{3}$
- c) $5\sqrt[3]{6}$
- d) $2\sqrt[4]{7}$
- e) $\frac{1}{2}\sqrt[3]{5}$
- f) $1.5\sqrt[4]{10}$
- Express each entire radical as an equivalent mixed radical.
 - a) $\sqrt{32}$
- b) $\sqrt{44}$
- c) $\sqrt{90}$
- d) $\sqrt{80}$
- e) \(\sqrt{360}\)
- f) $\sqrt{475}$
- 7. Express each entire radical as an equivalent mixed radical.
 - a) $\sqrt[3]{48}$
- **b**) $\sqrt[3]{120}$
- c) $\sqrt[3]{324}$
- d) $\sqrt[4]{48}$
- e) $\sqrt[4]{405}$
- f) $\sqrt[4]{208}$

- 8. Order each set of numbers from greatest to least. Then, identify the irrational numbers.
 - a) $0.5\sqrt{2}$ $0.\overline{7}$ $\frac{3}{4}$ $\sqrt{0.49}$
 - **b**) $\frac{2}{3}\sqrt[3]{0.343}$ $\sqrt{0.38}$ 0.62
- 9. Plot each set of numbers on a number line. Which of the numbers in each set is irrational?
 - a) $\sqrt[3]{435}$ 8.5 $4\sqrt{5}$ $\sqrt{64}$
 - **b**) $\frac{2\sqrt{85}}{3}$ $\sqrt[3]{216}$ $6\frac{9}{11}$ $3\sqrt{7}$
- 13. In the formula $r = \sqrt[3]{\frac{3V}{4\pi}}$, r represents the radius of a sphere, in centimetres, and V is the volume of the sphere, in cubic centimetres. What is the length of the radius of a sphere with each of the following volumes? Express the answers to two decimal places.
 - a) $132 \, \text{cm}^3$
- b) 1896 cm^3
- 14. A pendulum has a length of 6 ft. The formula $T = \sqrt{\frac{4\pi^2 l}{32 \text{ ft/s}^2}}$ represents the period of the pendulum. In this formula, T is the period of the pendulum, in seconds, and l is the length of the pendulum, in feet. Calculate the period of the pendulum. Express the answer to two decimal places,
- 19. Without using a calculator, solve each of the following:
 - a) \square 16
 - b) $\sqrt[3]{15.625}$
- $(4 + \sqrt{19} + \sqrt{36})$
- $(13 + \sqrt[3]{22 + \sqrt[3]{125}})$
- 20. Express as a power with a single rational exponent.
- $\pm a$) $\sqrt[3]{\sqrt{7}}$
- 4h) $\sqrt[4]{\sqrt[3]{5^2}}$
- c) $\sqrt[5]{\sqrt{\frac{1}{8}}}$ d) $\sqrt[4]{\sqrt[4]{(\frac{2}{5})^6}}$

1. a)
$$(\sqrt[3]{5})^2$$
 b) $(\sqrt[4]{8})^3$

c)
$$(\sqrt[5]{6})^3$$
 d) $\sqrt{81}$

e)
$$\frac{1}{9\frac{5}{5}} = \left[\left(\frac{1}{9} \right)^{\frac{1}{3}} \right]^5 = \left(\sqrt[3]{\frac{1}{9}} \right)^5$$

$$\int \sqrt[4]{x^3}$$

g)
$$(\sqrt[3]{a})^2$$

h)
$$\left(\sqrt[3]{\frac{x}{y}}\right)^2$$

2. a)
$$3^{\frac{3}{4}}$$

a)
$$3^{\frac{3}{4}}$$
 b) $(5t)^{\frac{4}{3}}$ **c)** $x^{\frac{2}{3}}$ **d)** $\left(\frac{a^2}{h^3}\right)^{\frac{1}{3}}$ or $\frac{a^{\frac{2}{3}}}{h^{\frac{3}{3}}}$

(e)
$$y^{\frac{5}{6}}$$
 f) $2^{\frac{3}{6}}$

4. a)
$$4\sqrt{5} = \sqrt{(4^2)}\sqrt{5}$$
 b) $\sqrt{36}$
= $\sqrt{(16)(5)}$
= $\sqrt{80}$

d)
$$\sqrt{384.4}$$

f)
$$\sqrt{\frac{10}{25}}$$
 or $\sqrt{\frac{2}{5}}$

c)
$$\sqrt[3]{750}$$

(c)
$$\sqrt[3]{\frac{5}{8}}$$

6. a)
$$4\sqrt{2}$$

c)
$$3\sqrt{10}$$

7. a)
$$2\sqrt[3]{6}$$

c)
$$3\sqrt[3]{12}$$

8. a)
$$0.\overline{7}, \frac{3}{4}, 0.5\sqrt{2}, \sqrt{0.49}; 0.5\sqrt{2}$$
 is an irrationa number.

b)
$$\sqrt[3]{0.343}, \frac{2}{3}, 0.62, \sqrt{0.38}; \sqrt{0.38}$$
 is an irrational number.

9. a)

$$\sqrt[3]{435}$$
 and $4\sqrt{5}$ are irrational numbers.

b)
$$\frac{\sqrt[3]{216}}{\sqrt[3]{216}} \frac{2\sqrt{85}}{3} \qquad 6\frac{9}{11} \qquad 3\sqrt{7}$$
 $= 6 \approx 6.15 \approx 6.82 \approx 7.94$

$$\frac{2\sqrt{85}}{3}$$
 and $3\sqrt{7}$ are irrational numbers.

- 13. a) approximately 3.16 cm
 - b) approximately 7.68 cm

19. a) 2 b) 5
c)
$$\sqrt{4 + \sqrt{19 + \sqrt{36}}} = \sqrt{4 + \sqrt{19 + 6}}$$

 $= \sqrt{4 + \sqrt{25}}$
 $= \sqrt{4 + 5}$
 $= \sqrt{9}$
 $= 3$

d)
$$\sqrt[4]{13} + \sqrt[3]{22} + \sqrt[3]{125} = \sqrt[4]{13} + \sqrt[3]{22} + 5$$

= $\sqrt[4]{13} + \sqrt[3]{27}$
= $\sqrt[4]{13} + 3$
= $\sqrt[4]{16}$

20. a)
$$\sqrt[3]{\sqrt{7}} = (\sqrt{7})^{\frac{1}{2}}$$

$$= (7^{\frac{1}{2}})^{\frac{1}{2}}$$

$$= 7^{\frac{1}{6}}$$

b) $\sqrt[4]{\sqrt[3]{5^2}} = (\sqrt[3]{5^2})^{\frac{1}{4}}$

b)
$$\sqrt[3]{5^2} = (\sqrt[3]{5^2})^4$$

= $[(5^2)^{\frac{1}{3}}]^{\frac{1}{4}}$
= $5^{(2)}(\frac{1}{3})(\frac{1}{4})$
= $5^{\frac{1}{6}}$

$$= 56$$
c) $\left(\frac{1}{8}\right)^{\frac{1}{10}}$ d) $\left(\frac{2}{5}\right)$